Compendium Lenses

Single Lens systems
The gaussian form of the thin lens formula is

\[\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = (n - 1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right), \tag{1} \]

- \(n \) is the index of refraction of the lens material
- \(p \) is the distance between the object and the lens
- \(i \) is the distance between the image and the lens
- \(f \) is the focal length of the lens.
- \(r_1, r_2 \) are the radii of curvature of the two sides of the lens

For a single lens:

1. A convex (concave) lens has a focal length which is positive (negative).
2. The radii \(r_1 \) are taken as positive (negative) if the corresponding lens surface is convex (concave).
3. A real image corresponds to a positive image distance \(i \), and the image lies on the opposite side of the lens from the object. ...
4. A virtual image corresponds to a negative image distance \(i \), and the image lies on the same side of the lens from the object. ...
5. Linear magnification
6. Angular magnification

Systems of lenses
Optical instruments like lenses and telescopes have more than one lens or mirror. For a two lens system constructed from lenses of focal lengths \(f_1 \) and \(f_2 \), a distance \(d \) apart, the location of the final image produced by the two-lens system is constructed by the following prescription.

1. Determine the location of the image formed by the first lens \(i_1 \), using the thin-lens equation:
 \[\frac{1}{i_1} = \frac{1}{f_1} - \frac{1}{p_1} \tag{2} \]
 Consider the original object as lying to the left of the first lens. If \(i_1 \) is positive, the image formed is real and is located to the right of the first lens. If \(i_1 \) is negative the image formed is virtual and to the left of the first lens.

2. The image of lens 1 is now the object for lens 2. This object distance is:
 \[p_2 = d - i_1, \tag{3} \]
 where \(d \) is the separation between the two lenses. If \(i_1 > d \) the image of the first lens lies to the right of the second lens and \(p_2 < 0 \).
2. Use the thin-lens equation to calculate the final object distance \(i_2 \)

\[
\frac{1}{i_2} = \frac{1}{f_2} - \frac{1}{p_2}
\]

(4)