10-63

\[\vec{V}_{ic} \rightarrow \quad \theta \]
\[\vec{V} = 2.0 \]
\[\vec{V} = 3.5 \]

\[P_{xi} = P_{xf} \]
\[m_i V_{ic} = m_z (2.0) \cos \theta + m_i (3.5) \cos (22^\circ) \]
\[V_{ic} = 2 \cos \theta + 3.5 \cos (22^\circ) \]

\[P_{yi} = P_{yf} \]
\[0 = m_z (2.0) \sin \theta - m_i (3.5) \sin (22^\circ) \]
\[2 \sin \theta = 3.5 \sin (22^\circ) \]

solve to get \(\theta = 41^\circ \) and \(V_{ic} = 4.8 \text{ m/s} \)

\[k_i = \frac{1}{2} m (4.8)^2 \]
\[k_f = \frac{1}{2} m (2)^2 + (3.5)^2 \]

K.E. not conserved

10-67

\[\vec{B}_i \rightarrow \vec{A}_i \]
\[\vec{B}_f \]
\[\sqrt{2} \]

\[\vec{P}_{Ai} + \vec{P}_{Bi} = \vec{P}_{Af} + \vec{P}_{Bf} \]
\[\vec{P}_{Af} = \vec{P}_{Bi} - \vec{P}_{Bf} \]
use the usual Cartesian system:

\[\vec{P}_{A_f} = (mv, 0) - (0, -\frac{mv}{2}) = mv(1, 0.5) \]

a) Angle of \(\vec{P}_{A_f} \) wrt x-axis is \(\tan^{-1}(\frac{0.5}{1}) = 26.6^\circ \)

b) No. If A is very much more massive than B, then it will have a low final velocity.

The impulses are directed as shown. Because triangle is equilateral, impulses make 30° angle with \(\vec{V}_0 \).

By symmetry considerations, \(\vec{V}_{1f} \) will be parallel or antiparallel to \(\vec{V}_0 \).

\[P_{ix} = P_{fx} \Rightarrow mv_0 = mv_{1f} + mv_{2f} \cos(30^\circ) \]
\[+ mv_{3f} \cos(30^\circ) \]

By symmetry \(V_{2f} = V_{3f} \)

10 = \(V_{1f} + 2V_{2f} \cos(30^\circ) \)

Cons. of K.E.

100 = \(V_{1f}^2 + 2V_{2f}^2 \)

Solve to get:

\[V_{1f} = -2.0 \text{ m/s} \text{ (bounces back)} \]

\[V_{2f} = V_{3f} = 6.93 \text{ m/s } \text{(\(\vec{V}_f \) directed along J's)} \]
11-10 Arrow must be fast enough so it moves 20 cm in a time = \(\frac{T}{8} \) where \(T \) is the time that it takes for the wheel to make 1 rev. It doesn't matter where you aim.

\[V_{min} = \frac{20 \text{ cm}}{(T/8)} \quad T = \frac{1}{2.5} \text{ sec} \quad V_{min} = 4 \text{ m/s} \]

11-21 \(\Delta \theta = 40 \text{ rev} = 251 \text{ rad} \)
\(\omega_0 = 1.5 \text{ rad/s} \quad \text{and} \quad \omega = 0 \)

(a+b) First find \(\alpha \):

\[w^2 = \omega_0^2 + 2 \alpha \Delta \theta \]
\[\alpha = -4.5 \times 10^{-3} \text{ rad/s}^2 \]

Next \(t \):

\[w = \omega_0 + \alpha t \]
\[t = 340 \text{ s} \]

(c) Use \(w^2 = \omega_0^2 + 2 \alpha \Delta \theta \) with \(\Delta \theta = 126 \) rad
Get \(w = 1.06 \text{ rad/s} \)

\[t = (w - \omega_0)/\alpha = 98 \text{ s} \]

(11-42 see below)

11-44 Let \(f \) = # of rev. per sec.
\[w = \text{# of rad. per sec.} \]

Then \(f = \frac{1}{T} \) also \(f = \frac{w}{2\pi} \)
Thus \(w = \frac{2\pi}{T} \)

(a) \[\alpha = \frac{dw}{dt} = 2\pi \frac{d(1/T)}{dt} = -2\pi T^{-2} \frac{dT}{dt} \]

\[= -0.073 \text{ s}^{-2} \left(\frac{s}{y} \right) = -2.3 \times 10^{-9} \text{ rad/s}^2 \]
6. Use \(w = w_0 + \alpha t \) with \(w_0 = \frac{2\pi}{T_0} = \frac{2\pi}{0.033 \text{ s}} \)
get \(t = 26.00 \text{ y} \)

(c) Let \(t = 0 \) now. Want \(w \) for \(t = -9.42 \text{ y} \)
or \(t = -3.0 \times 10^{10} \text{ s} \)
\(w = w_0 - \alpha t \) gives \(w = 259 \text{ s}^{-1} \) or \(T = 0.024 \text{ s} \)

11.42

(a) \(V_1 = wR = w_0 r_A = 150 \text{ cm/s} \)
(b) \(w_B = \frac{V}{r_B} = 15 \text{ rad/s} \)
(c) \(w_B' = w_B = 15 \text{ rad/s} \)
(d) \(V_2 = w_B' r_B' = 75 \text{ cm/s} \)
(e) \(\omega_c = \frac{V_2}{r_c} = 3 \text{ rad/s} \)

11.56
See table 11-2
\[I_{cm} = \frac{1}{2} M (a^2 + b^2) \]
\[h = \sqrt{(a/2)^2 + (b/2)^2} \]
\[I = I_{cm} + M h^2 = \frac{1}{3} M (a^2 + b^2) \]

11.70
\(M = 44,000 \text{ kg} \)
\(I = 8.7 \times 10^4 \text{ kg m}^2 \)
\(R = 2.4 \text{ m} \)
\(\Delta \theta = \frac{\pi}{2} \)
\(t = 30 \text{ sec} \)

\[T = I \alpha \]
\[FR = I \alpha \]
\[\Delta \theta = w_0 t + \frac{1}{2} \alpha t^2 \]
\[\alpha = \frac{2 \Delta \theta}{t} \]

\[F = \frac{I\alpha}{R} = \frac{2 I \Delta \theta}{R t^2} = 130 \text{ N} \]

11-76

\(a_t \) of a point on outer edge of pulley = \(\alpha \)

So \(\alpha = \frac{a_t}{R} = \frac{\alpha}{R} = \text{constant} \)

(a) \(\alpha = \frac{2 \theta}{t^2} \) because \(W_o = 0 \)

(b) \(a = R \alpha = \frac{2 \theta R}{t^2} \)

(c) \(T = I \alpha \)

\[T_1 R - T_2 R = I \alpha \]

Free-body dia. for lower M gives

\[T_1 - Mg = -Ma \]

\(\theta, a \) are known (see above) so solve 2 eq. for \(T_1, T_2 \) to get:

\[T_1 = M \left(g - \frac{2 \theta R}{t^2} \right) \]

\[T_2 = Mg - \frac{2 \theta}{t^2} (RM + \frac{I}{R}) \]